A Recursive Method for Structural Learning of Directed Acyclic Graphs

نویسندگان

  • Xianchao Xie
  • Zhi Geng
چکیده

In this paper, we propose a recursive method for structural learning of directed acyclic graphs (DAGs), in which a problem of structural learning for a large DAG is first decomposed into two problems of structural learning for two small vertex subsets, each of which is then decomposed recursively into two problems of smaller subsets until none subset can be decomposed further. In our approach, search for separators of a pair of variables in a large DAG is localized to small subsets, and thus the approach can improve the efficiency of searches and the power of statistical tests for structural learning. We show how the recent advances in the learning of undirected graphical models can be employed to facilitate the decomposition. Simulations are given to demonstrate the performance of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive Neural Networks and Graphs: Dealing with Cycles

Recursive neural networks are a powerful tool for processing structured data. According to the recursive learning paradigm, the input information consists of directed positional acyclic graphs (DPAGs). In fact, recursive networks are fed following the partial order defined by the links of the graph. Unfortunately, the hypothesis of processing DPAGs is sometimes too restrictive, being the nature...

متن کامل

Directed cyclic graphs, conditional independence, and non-recursive linear structural equation models

Recursive linear structural equation models can be represented by directed acyclic graphs. When represented in this way, they satisfy the Markov Condition. Hence it is possible to use the graphical d-separation to determine what conditional independence relations are entailed by a given linear structural equation model. I prove in this paper that it is also possible to use the graphical d-separ...

متن کامل

Risk Assessment Algorithms Based on Recursive Neural Networks

The assessment of highly-risky situations at road intersections have been recently revealed as an important research topic within the context of the automotive industry. In this paper we shall introduce a novel approach to compute risk functions by using a combination of a highly non-linear processing model in conjunction with a powerful information encoding procedure. Specifically, the element...

متن کامل

O ct 2 01 7 LEARNING DIRECTED ACYCLIC GRAPHS WITH PENALIZED NEIGHBOURHOOD REGRESSION

We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with p ≫ n. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008